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ABSTRACT: We prove that for any > 1, xed in advance, the permanent of an n n complex matrix, where the 

absolute value of each diagonal entry is at leasttimes bigger than the sum of the absolute values of all other 

entries in the same row, can be approximated within any relative error 0 << 1 in quasi-polynomial n
O(lnnln )

 time. 

We extend this result to multidimensional permanents of tensors and apply it to weighted counting of perfect 

matchings in hypergraphs. 

 

INTRODUCTION AND MAIN RESULTS 
In this paper, we continue the line of research started in [Ba16a] and continued, in particular, in [Ba17], 

[PR17a], [Ba16b], [PR17b], [L+17], [BR17] and [EM17], on constructing e cient algorithms for computing 

(approximating) combinatori-ally de ned quantities (partition functions) by exploiting the information on their 

complex zeros. A typical application of the method consists of 

a) proving that the function in question does not have zeros in some interesting domain in C
n
 

and 

b) constructing a low-degree polynomial approximation for the logarithm of the function in a slightly smaller 

domain. 

 

Usually, part a) is where the main work is done: since there is no general method to establish that a 

multivariate polynomial (typically having many monomials) is non-zero in a domain in C
n
, some quite clever 

arguments are being sought and found, cf. [PR17b], [EM17], see also Section 2.5 of [Ba16b] for the very few 

general results in this respect. Once part a) is accomplished, part b) produces a quasi-polynomial approximation 

algorithm in a quite straightforward way, see Section 2.2 of [Ba16b]. However, if one wants to improve the 

complexity from quasi-polynomial to genuine polynomial time, a considerable e ort can be required, see 

[PR17a] and [L+17]. 

 

In this paper, we contribute a new method to accomplish part a) and demon-strate it by producing a 

quasi-polynomial algorithm to approximate permanents of complex matrices and tensors from a reasonably wide 

and interesting class (the hard work of sharpening our algorithms to genuine polynomial time under further 

restrictions on the matrices and tensors is done in [PR17a], see also [BR17]). While computing permanents of 

complex matrices is of interest to quantum computations and boson sampling, see [EM17], our main 

contribution is to the computation of multi-dimensional permanents of (complex) tensors, which results in an e 

cient algorithm to count perfect matchings, weighted by their Hamming distance to one given perfect matching, 

in an arbitrary hypergraph. In general, the algorithm is quasi-polynomial, it becomes genuinely polynomial on 

hypergraphs with degrees of the vertices bounded in advance. We discuss this in Section 1.7. We hope that the 

method of this paper will nd other applications, in particular to count solutions, weighted by their Hamming 

distance to one given solution, of other NP-complete problems. 

 

We start with a popular example of the permanent of a square matrix. 

(1.1) Permanents. Let A = (aij) be n n complex matrix and let 

 

 n 

 X Y 

per A = 
a
i (i) 

 2Sn i=1 

 

be its permanent. Here Sn is the symmetric group of all n! permutations of the set f1; : : : ; ng. First, we prove 

the following result. 
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(1.2) Theorem. Let A be n n complex matrix such that 

 

n 

X 

jaijj < 1  for  i = 1; : : : ; n: 

j=1 

 

Then 

 

per(I + A) 6= 0; 

 

where I is the n n identity matrix. 

 

In [Br59], Brenner obtains a family of inequalities satis ed by (determinantal) minors of a diagonally 

dominant matrix, mentions as a corollary (Corollary 5 from [Br59]), that the determinant of such a matrix is 

necessarily non-zero, and con-cludes the paper with the following sentence: \The referee remarked that since the 

permanent of matrix can be expanded by minors, corresponding theorems holds for permanents." The 

permanental version of Corollary 5 of [Br59] is equivalent to our Theorem 1.2. 

In this paper, we provide a di erent proof of Theorem 1.2, which easily extends to multi-dimensional 

permanents of tensors (Theorem 1.5 below) and, more, gen-erally, can be useful for establishing a zero-free 

region for an arbitrary multi-a ne polynomial. 

 

We also note that A is Hermitian then I +A, being a diagonally dominant matrix, is necessarily positive 

de nite and hence per(I + A) is positive real [MN62]. 

 

Let A be a matrix satisfying the conditions of Theorem 1.2. Then we can choose a continuous branch of 

the function A 7! ln per(I + A). Applying the methods developed in [Ba16b] and [Ba17], we obtain the 

following result. 

 

(1.3) Theorem. Let us x a real 0 << 1. Then for any positive integer n and for any 0 << 1 there exists a 

polynomial p(A) = p ;n; (A) in the entries of an 

n -n complex matrix A such that deg p = O (ln n ln ) and 

 

jln per(I + A) p(A)j 

 

provided A = (aij) is a complex n n matrix such that 

 

n 

X 

jaijj < for i = 1; : : : ; n: 

j=1 

 

 

Moreover, given ; n and , the polynomial p ;n; can be computed in n
O(lnnln )

 (the implied constant in the 

\O" notation depends only on ). 

 

We note that the value of j per(I + A)j for a matrix A satisfying the conditions of Theorem 1.3 can vary 

in an exponentially wide range in n, even when A is required to have zero diagonal: choosing A to be block-

diagonal with 2 2 blocks 

 

   

0 a ; 

b 0  

 

we can make j per(I + A)j as large as (1 + 
2
)
bn=2c

 and as small as (1
2
)
bn=2c

.If B = (bij) is a strongly diagonally 

dominant complex matrix such that 

 

X  jbijj   
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jbiij  for i = 1; : : : ; n 

j: j6=i    

then  

i
Y 

bii
!
 per C; 

  

per B = n 

  =1   

where C = (cij) is obtained from B by a row scaling 

c
ij 

=b
ii 

1
bij for all i; j: 

 

We have C = I + A, where A satis es the conditions of Theorem 1.3. Hence our algorithm can be applied to 

approximate the permanents of complex strongly diagonally dominant matrices. 

 

If the matrix A in Theorem 1.3 is Hermitian, then I + A, being diagonally domi-nant, is positive de nite. 

A polynomial time algorithm approximating permanents of n n positive semide nite matrices within a simply 

exponential factor of c
n
 (with c 4:84) is constructed in [A+17]. Other interesting classes of complex matrices 

where e cient permanent approximation algorithms are known are some random matrices [EM17] and matrices 

not very far from the matrix lled with 1s [Ba17]. Famously, there is a randomized polynomial time algorithm to 

approximate per A if A is non-negative real [J+04]. The best known deterministic polynomial time algorithm 

approximates the permanent of an n n non-negative real matrix within an exponential factor of 2
n
 and is 

conjectured to approximate it within a factor of 2
n=2

 [GS14]. 

 

(1.4) Multidimensional permanents. For d 2, let A = (ai1:::id ) be a cubical n : : : n array (tensor) of 

complex numbers (so that for d = 2 we obtain an n n square matrix). We de ne the permanent of A by 

 

X 

n 

Y 

PERA = 
a
i 2(i)::: d(i)

: 

2;::: ; d2Sn i=1 

 

Clearly, our de nition agrees with that of Section 1.1 for the permanent of a matrix. Just as the 

permanent of a matrix counts perfect matchings in the underlying weighted bipartite graph, the permanent of a 

tensor counts perfect matchings in the underlying weighted d-partite hypergraph, see, for example, Section 4.4 

of [Ba16b]. We de ne the diagonal of a tensor A as the set of entries fai  i; i = 1; : : : ; ng. 

We prove the following extension of Theorem 1.2. 

 

(1.5) Theorem. Let A = (ai1:::id ) be a d-dimensional n : : : n complex tensor with such that 

 

X 

jaii2:::id j < 1  for  i = 1; : : : ; n: 

1  i2;::: ;id n 

 

Then 

 

PER(I + A) 6= 0; 

 

where I is the d-dimensional n : : : n tensor with diagonal entries equal to 1 and all other entries equal to 0. 

 

Similarly to Theorem 1.3, we deduce from Theorem 1.5 the following result: 

 

(1.6) Theorem. Let us x a positive integer d 2 and a real 0 << 1. Then for any positive integer n and any 0 << 1 

there exists a polynomial p(A) = pd; ;n; (A) 
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in the entries of a d-dimensional n : : : n tensor A such that deg p = O (ln n ln ) and 

 

 jln PER(I + A) p(A)j  

for any d-dimensional n  : : :  n tensor A such that 

1  i2 
X 

d   

 
ja
ii2:::id

j< 
for i = 1; : : : ; n: 

;::: ;i n 

 

Moreover, given d, , n and , the polynomial pd; ;n; can be computed in n
O
d;

(lnnln )
 time (so that the implied constant 

in the \O" notation depends 

only on d and ). 

 

(1.7) Weighted counting of perfect matchings in hypergraphs. We de-scribe an application of Theorem 

1.6 to weighted counting of perfect matchings in hypergraphs, cf. [BR17]. Let H be a d-partite hypergraph with 

set V of nd vertices equally split among d pairwise disjoint parts V1; : : : ; Vd such that V = V1 [: : : [Vd. The set 

E of edges of H consists of some d-subsets of V containing exactly one vertex from each part Vi. We number the 

vertices in each part Vi by 1; : : : ; n and encode H by a d-dimensional tensor A = (ai1:::id ), where 

 

1 if fi1; : : : ; idg 2 E; 
ai
1

:::i
d 

=
 0 otherwise. 

 

A perfect matching in H is a collection of n edges containing each vertex exactly once. As is known, 

for d 3 it is an NP-complete problem to determine whether a given d-partite hypergraph contains a perfect 

matching. Suppose, however, that we are given one perfect matching M0 in H. Without loss of generality we 

assume that M0 consists of the edges (1; : : : ; 1), (2; : : : ; 2); : : : ; (n; : : : ; n). For a perfect matching M in H, 

let dist(M; M0) be the number of edges in which M and M0 di er (the Hamming distance between M and M0). 

Let us choose a > 0. It is not hard to see that 

 

 

PER I+ 
2 

 X 

(1.7.1) (A I)= 
dist(M;M

0
)
; 

M 

 

where the sum is taken over all perfect matchings M in H. Let us assume now that each vertex of the 

part V1 is contained in at most edges of H. It follows from Theorem 1.6 that (1.7.1) can be e ciently 

approximated for any , xed in advance, provided 

r 

 

< 
1
1: 

 

This ispan improvement compared to [BR17] where we could only a ord = O(1= d) and also required 

the degree of every vertex of H not to exceed . 

 

As is discussed in [BR17], see also [PR17a], for any , xed in advance, we obtain a polynomial time algorithm 

approximating (1.7.1). 

 

Generally, knowing one solution in an NP-complete problem does not help one to nd out if there are other 

solutions. Our result shows that some statistics over the set of all solutions can still be computed e ciently. 

 

We prove Theorems 1.2 and 1.5 in Section 2 and deduce Theorems 1.3 and 1.6 from them in Section 3. 

 

2. Proofs of Theorems 1.2 and 1.5 

 

We start with a simple lemma. 

 

(2.1) Lemma. Let us  x 1; : : : ;n2C. Then for anyz1; : : : ; zn2Cthere exist 

z ; : : : ; z  2 C such that 

1 n 
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n  n n   n 

X  X X  

z 

X 

z 

k 

= z ; 

j 

z 

k  
k
 k kjj kj 

k=1  k=1 k=1   k=1 

 

and zk 6= 0 for at most one k. 

 

Proof. Without loss of generality, we assume that k 6= 0 fork= 1; : : : ; n. Given 

z1; : : : ; zn, let us de ne 

K = 
(
(x1; : : : ; xn) 2 C

n
 : n kxk = n kzk  and n jxkj n jzkj

)
 : 

 X  X  X  X  

 k=1  k=1  k=1  k=1  

 

Then K is a non-empty compact set and the continuous function 

 

n 

X 

(x1; : : : ; xn) 7! jxkj 

k=1 

 

attains its minimum on K at some point, say (y1; : : : ; yn). We claim that all non-zero complex numbers among 

kyk are positive real multiples of each other. 

 

Suppose that, say 1y1 6= 0 and 2y2 6= 0 are not positive real multiples of each other and let v = 1y1 + 2y2. Hence j 

1y1j + j 2y2j > jvj. Let 

 

y1
0
 = 

 

vj 1y1j 

and  y2
0
 = 

 

 

(j 1y1j + j 2y2j) 1  

 

Then 

1y1
0
 +  2y2

0
 = v = 1y1 

vj 2y2j 

 

2 (j 1y1j + j 2y2j) 
: 

 

 

+ 2y2 
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and 

j 

y0 + y0 = jvjjy1j + jvjjy2j < y 

1
j 

+ y : 

1j j 2j  j 1y1j + j 2y2j 

6 

j 1y1j + j 2y2j  j j 2
j 

            

 

Hence de ning yk
0
 = yk for n > 2, we obtain a point (y1

0
; : : : ; yn

0
) 2 K with 

 

n n 

X X 

jyk
0
j < jykj ; 

k=1 k=1 

 

which is a contradiction. 

This proves that there is a point (y1; : : : ; yn) 2 K where all non-zero complex numbers kyk are positive real 

multiples of each other, so that 

the ratios 

kyk 

when   kyk 6= 0  are all equal: j kykj 

 

Next, we successively reduce the number of non-zero coordinates among y1; : : : ; yn, while keeping all non-zero 

numbers kyk positive real multiples of each other. 

 

Suppose that there are two non-zero coordinates, say y1 and y2. Without loss of generality, we assume that j 1j j 

2j. Now, we let: 

 

       

y1
0 

= 0 and 

  

y2
0 

 

= y2 + j 1jjy1j y2: 

          

                    

                          j 2jjy2j            

Then                      

j 1jjy1j 

                

   

j 

y
0 

+ 

j 

y
0 

 = 

j 

y
0 

= 

j 

y 

2j 

+  

j 

y 

1j 

+ y  :       

Moreover, 

 1j  2j  2j        j 2j   j 2j         

                                         

y
0 

+ y0 =  y 

 

+ 

j 1jjy1j 

y 

 

= 

 

y 

  

+ 

 2y2  

 y 

 

= y 

 

+ 

 1y1  

y 

 

           

1j 

 

j 1y1j
j 

1j 1 1 2 2 2 2   
2
 j 2jjy2j  2   2  2   j 2y2j

j1 
  2   2  1 

 

= 2y2 + 1y1: 

 

Hence letting yk
0
 = yk for k > 2 we obtain a point (y1

0
; : : : ; yn

0
) 2 K with fewer non-zero coordinates. Moreover, 

all non-zero numbers kyk
0
 remain positive real 

multiples of each other. Repeating this process, we obtain the desired vector 

(z ; : : : ; z ) 

2 C 

n. 

 1 n  

Now we are ready to prove Theorem 1.2. 

 

(2.2) Proof of Theorem 1.2. First, we observe that without loss of generality, we may assume that A has 

zero diagonal. Indeed, let A = (aij) be an n n complex matrix with sums of the absolute values of entries in each 

row less than 1. Then the diagonal entry in the i-th row of the matrix I + A is 1 + aii with absolute value j1 + aiij 

1 j aiij > 0, while the sum of the absolute values of the o -diagonal entries in the i-th row of I +A is less than 1j 

aiij. Consequently, dividing the i-row of I + A by 1 + aii for i = 1; : : : ; n, we obtain the matrix I + A
0
 where A

0
 

satis es the conditions of the theorem and, additionally, has zero diagonal. Moreover, 

! 
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n 

Y 

per(I + A) = (1 + aii) per(I + A
0
): 

i=1 

 

Thus we assume that A has zero diagonal. 

Let Mn be the set of n n complex matrices A with zero diagonal and sums of absolute values of entries 

in every row less than 1. We claim for every A 2 Mn there exists B 2 Mn such that per(I + A) = per(I + B) and B 

has at most one non-zero entry in every row. Given A = (aij), we construct the matrix B step by step by 

modifying A row by row in n steps. Let Aij be the (n 1) (n 1) matrix obtained from A by crossing the i-th row 

and the j-th column. We have 

 

n 

X 

per(I + A) = per A11 + a1j per A1j: 

 

j=2 

 

Applying Lemma 2.1, we  nd b1j for j = 1; : : : ; n such that b11 = 0, 

n n n 

X X Xj 

b1j per A1j = a1j per A1j; jb1jj < 1 

j=2 j=2 =2 

 

and at most one of the numbers b1j is non-zero. At the rst step, we de ne B by replacing a1j by b1j for j = 1; : : : ; 

n and note that per(I + A) = per(I + B). 

 

At the end of the (k 1)-st step, we have a matrix B 2 Mn such that per(I+A) = per(I +B) and each of the rst k 1 

rows of B contains at most one non-zero entry. If k n, we write 

 

X 

 

per(I + B) = per Bkk + 

 

akj per Bkj; 

j: j6=k 

 

where Bkj is the (n 1) (n 1) matrix obtained from B by crossing out the k-th row and j-th column. Applying 

Lemma 2.1, we nd bkj for j = 1; : : : ; n such that 

bkk = 0, 

X X X 

bkj per Bkj = akj per Bkj; jbkjj < 1 

j: j6=k j: j6=k j: j6=k 

and at most one of the numbers bkj is non-zero. We modify B by replacing akj with bkj for j = 1; : : : ; n. We have 

per(I + A) = per(I + B). 

 

At the end of the n-th step, we obtain a matrix B 2 Mn containing at most one non-zero entry in each row and 

such that per(I + A) = per(I + B). 

 

We now have to prove that per(I + B) 6= 0. Since every row of B contains at most one non-zero entry, 

the total number of non-zero entries in B is at most n. Therefore, if there is a column of B containing more than 

one non-zero entry, there is a column, say the k-th,  lled by zeros only. Then per(I + B) = per(I + B
0
), where B

0
 

is the matrix obtained from B by crossing out the k-th row and column. Hence without loss of generality, we 

may assume that every row and every column of B contains exactly one non-zero entry. Let us consider the 

bipartite graph on n + n vertices where the i-th vertex on one side is connected by an edge to the j-th 8 
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vertex on the other side if and only if the (i; j)-th entry of I + B is not zero. Then the graph is a disjoint union of 

some even cycles C1; : : : ; Cm. Hence 

 

per(I + B) = m 0 1 + 
b
ij 1 

 Y B f Y C 

  B  i6=j C 

 

k=1 

@  

i;jg2Ck 

A 

    

     

 

 

where bij are the non-zero entries of B corresponding to the edges in Ck. Since 

jbijj < 1, we have per(I + B) 6= 0. Before we prove Theorem 1.5, we introduce a convenient de nition. 

 

(2.3) Slice expansion of the permanent of a tensor. Let A = (ai1:::id ) be a d-dimensional n : : : n tensor. 

Let us x 1 k d and 1 j n. We de ne the (k; j)-th slice of A as the set of n
d1

 entries ai1::: ;id with ik = j. In particular, if 

d = 2, so A is a matrix, the (k; j)-th slice of A is the j-th row if k = 1 and the j-th column if k = 2. Theorem 1.5 

asserts that PER(I + A) 6= 0, if A is a complex tensor with sums of the absolute values of the entries in the (1; 

j)-th slice less than 

 

1 for j = 1; : : : ; n. 

For a given entry ai1:::id , let Ai1:::id be the d-dimensional (n 1) : : : (n 1) tensor obtained from A by crossing out 

the d slices containing ai1:::id . Then, for 

any k = 1; : : : ; d and any j = 1; : : : ; n, we have the (k; j)-slice expansion of the 

permanent: 

X 

    

 i1 d    

(2.3.1) PERA =   
a
i1 :::id 

PERA
i1:::id

: 

  ;::: ;i  :   

 ik=j     

 

(2.4) Proof of Theorem 1.5. The proof closely follows that of Theorem 1.2 in Section 2.2. 

 

Arguing as in Section 2.2, without loss of generality we assume that A has zero diagonal. 

 

Now we prove that for every d-dimensional n : : : n tensor A with zero diagonal and sums of absolute values in 

the (1; j)-th slice less than 1 for j = 1; : : : ; n, there exists a d-dimensional n : : : n tensor B with zero diagonal 

such that PER(I + A) = PER(I + B), all entries of B are less than 1 in the absolute value and the (1; j)-th slice of 

B contains at most one non-zero entry for j = 1; : : : ; n. 

We construct B by modifying A slice by slice starting with B = A. If the (1; j)-th slices for j = 1; : : : ; m 1 are 

modi ed, we consider the (1; m)-slice expansion (2.3.1) 

 

X 
PER(I+B) = PERB

m:::m 
+
 

a
mi2:::id

PERB
mi2:::id

: 

i2;::: ;id: 

(i2;::: ;id)6=(m;::: ;m) 

 

Using Lemma 2.1, we nd complex numbers bmi2:::id such that bm:::m = 0, at most one of bmi2:::id is non-zero, less 

than 1 in the absolute value and 

 

2 
X
d 

a
mi2 :::id 

PERB
mi2:::id = 

i2 
X
d 

b
mi2 :::id 

PERB
mi2:::id

: 
    

i ;::: ;i :     ;::: ;i :   

(i2;::: ;id)6=(m;::: ;m)    (i2;::: ;id)6=(m;::: ;m)   
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We then replace the entries ami2:::id in the (1; m)-th slice of B by the entries bmi2:::id . 

In the end we produce the desired tensor B. 

 

Hence our goal is to prove that PER(I +B) 6= 0 if B is a d-dimensional n : : : n tensor with zero 

diagonal, complex entries less than 1 in the absolute value and containing at most one non-zero entry in the (1; 

j)-th slice for j = 1; : : : ; n. In particular, the total number of non-zero entries of B does not exceed n. It follows 

then that if some (k; j)-th slice of B contains more than one non-zero entry, there is a (k; m)-th slice of B lled 

entirely by zeros. Denoting by B
0
 the (n 1) : : : (n 1) tensor obtained from B by crossing out the d slices 

containing (m; : : : ; m), we will have PER(I + B) = PER(I + B
0
). Hence without loss of generality we assume 

that B contains exactly one non-zero entry in each of the dn slices. 

 

Let us consider the underlying d-partite hypergraph H encoded by I + B. We number the vertices in each of the 

d parts by 1; : : : ; n. A set E of d vertices of 

 

H is an edge of H if and only if it contains exactly one vertex ik for k = 1; : : : ; d from each part and the (i1; : : 

: ; id)-th entry of I + B is non-zero. Hence each vertex is contained in exactly two edges of H. We call the 

edges ej = (j; : : : ; j) for j = 1; : : : ; n standard (they correspond to the diagonal 1s of I + B) and the 

remaining n edges additional (they correspond to the non-zero entries of B). We de ne the weight of a 

standard edge equal to 1 and of an additional edge fi1; : : : ; idg 

equal to bi1:::id . We de ne the weight of a perfect matching M in H as the product of weights of the edges in M 

and the total weight w(H) as the sum of weights of all perfect matchings in H. Hence PER(I + B) = w(H) and 

our goal is to prove that w(H) 6= 0. 

The hypergraph H splits into the disjoint union of connected components 

H1; : : : ; Hm, so that for any two vertices v
0
 and v

00
 in each Hk there is a chain of 

edges u ; : : : ; u 

s 

such that v
0 

2 

u , v
00 

2 

u 

s 

and u 

i \ 

u = for i = 1; : : : ; s  1 

1  1    i+1 6 ;  

and for any two vertices v
0
 and v

00
 in di erent Hi and Hj there is no such chain. Then w(H) = w(H1) w(Hk) and 

hence it su ces to prove that w(Hk) 6= 0 for k = 1; : : : ; m. Hence without loss of generality, we assume that H is 

connected. There is a perfect matching of weight 1 in H consisting of the standard edges e1; : : : ; en, which we 

call standard. Furthermore, n additional edges are necessarily pairwise disjoint (since otherwise there is a vertex 

that belongs to at least three edges: two additional and one standard) and also form a perfect matching, which 

we call additional. 

 

We claim that any perfect matching in H is either standard or additional. Seek-ing a contradiction, 

suppose that there is a perfect matching consisting of some 1 k < n standard edges, say e1; : : : ; ek and some n k 

> 0 additional edges 

 

edges, say uk+1; : : : ; un. Let U = uk+1 [ : : : [ un and let W = e1 [ : : : [ ek. Then 

 

every vertex in U is contained in one standard edge among ek+1; : : : ; en and one additional edge among uk+1; : : : 

; un and hence there cannot be an edge contain-ing a vertex of U and a vertex of W , which contradicts the 

assumption that H is connected. 

 

Hence there are exactly two perfect matchings in connected H, one standard of weight 1 and one additional of 

weight less than 1 in the absolute value. Thus 

 

w(H) 6= 0 and the proof follows. 

 

3. Proofs of Theorems 1.3 and 1.6 

 

We follow the approach outlined in [Ba16b] and [Ba17]. 

 

(3.1) Proof of Theorem 1.3. Let A be an n n complex matrix satisfying the conditions of Theorem 1.3. We 

consider a univariate polynomial 

 

g(z) = per(I + zA): 

 

Then deg g n and, by Theorem 1.2, we have 
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(3.1.1) g(z) 6= 0  provided jzj <
1
: 

We choose a continuous branch of  

(3.1.2) f(z) = ln g(z)  for jzj <
1
: 

 

Hence our goal is to approximate f(1) = ln per(I + A) within an additive error of > 0 by a polynomial p(A) in the 

entries of A of deg p = O (ln n ln ). We consider the Taylor polynomial Tm(z) of f computed at z = 0: 
m

 f(k)(0) 

X 

(3.1.3) Tm(z) = f(0) + z
k
: 

 

k! 

k=1 

 

Since deg g n and (3.1.1) holds, by Lemma 2.2.1 of [Ba16b] (Lemma 7.1 of [Ba17]), we have 

 

jf(1)  Tm(1)j 

 n m+1 

(3.1.4)  

 

: (m + 1)(1   ) 

 

Therefore, to approximate f(1) within an absolute error 0 << 1, it su ces to choose m = O (ln n ln ), where the 

implied constant in the \O" notation depends only on . 

 

Next, as is discussed in Section 2.2.2 of [Ba16b] (Section 7.1 of [Ba17]), one can compute the values of f(0) = 

ln g(0) = 0 and f
(k)

(0) for k = 1; : : : ; m from 

 

 

the values of g(0) = 1 and g
(k)

(0) for k = 1; : : : ; m in O(m
2
) time, by solving a non-singular m m triangular 

system of linear equations 

(3.1.5) 

k  1 

k j 1 f
(k  j)

(0)g
(j)

(0) = g
(k)

(0)  for  k = 1; : : : ; m: j=0 

 X     

On the other hand,  

g(z) = per(I + zA) = z
jIj

 per AI 

1;::: ;n 

g I  f
X 

where AI is the submatrix of A consisting of the entries with row and column indices in I, where we agree that 

per A; = 1. Consequently, 

g
(k)

(0) = k! per AI ; 

1;::: ;n 

g I  f
X 

jIj=k  

 

so that g
(k)

(0) is a homogeneous polynomial of degree k in the entries of A. It can be computed by the direct 

enumeration in n
O(k)

 time. It follows from (3.1.5) that f
k
(0) is a polynomial of degree k in the entries of A 

computable in n
O(k)

 time. 

Since m = O (ln n ln ), the proof follows by (3.1.4). 
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(3.2) Proof of Theorem 1.6. The proof is very similar to that of Theorem 1.3 in Section 3.1. Let A be a d-

dimensional n : : : n complex tensor satisfying the conditions of Theorem 1.6. We consider the univariate 

polynomial 

 

g(z) = PER(I + zA): 

 

Then deg g n and by Theorem 1.5, we have (3.1.1). We then de ne the function f(z) by (3.1.2), de ne the 

polynomial Tm(z) by (3.1.3) and conclude as in Section 3.1 that (3.1.4) holds. As in Section 3.1, to approximate 

f(1) by Tm(1) within an additive error 0 << 1, it su ces to choose m = O (ln n ln ). 

 

As in Section 3.1, it remains to prove that g
(k)

(0) is a polynomial of degree k in the entries of A. We have the 

expansion 

I  f
X 

g 

PER(I + zA) = z
jIj

 PER AI ; 

1;::: ;n  

 

where AI is the subtensor k = 1; : : : ; d and where we 

 

g 

 

of A consisting of the entries ai1:::id with ik 2 I for agree that PER A; = 1. Then 

X 
(k)

(0) = k! PER AI ; 

 

I  f1;::: ;ng 

jIj=k 

 

 

so g
(k)

(0) is indeed a homogeneous polynomial of degree k in the entries of A. Moreover, it can be computed by 

the direct enumeration in n
O(kd)

 time. Since we 

have k = O (ln n ln ), the proof is completed as in Section 3.1. 
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